Definición inferencial de la comprensión científica
DOI:
https://doi.org/10.35305/cf2.vi19.191Palabras clave:
comprensión, modelos, inferencialismo, explicación, cogniciónResumen
En las últimas dos décadas ha surgido en epistemología una perspectiva que rescata la noción de comprensión e intenta ponerla en el foco principal de la discusión sobre la modelización científica, al considerar que tiene un papel fundamental en la actividad del conocimiento. Desde una breve revisión de algunas ideas del pragmatismo americano y del inferencialismo de Mauricio Suárez, el objetivo de este trabajo es proponer una definición inferencial de la comprensión científica. Se afirma que la comprensión cumple un papel central en la práctica de la modelización, como término de éxito cognitivo, y que puede introducirse como una noción importante para la discusión acerca de la función explicativa que tienen los modelos.
Citas
Aristotle. (1960). Posterior Analytics. Topica. Harvard University Press.
Baumberger, C., Beisbart, C. & Brun, G. (2017). What is Understanding? An Overview of Recent Debates in Epistemology and Philosophy of Science. En S. R. Grimm, C. Baumberger & A. S. (Eds.), Explaining Understanding. New Perspectives from Epistemology and Philosophy of Science, pp. 1-34. Routledge.
Bianchi, F. & Squazzoni, F. (2015). Agent-Based Models in Sociology. Wiley Interdisciplinary Reviews: Computational Statistics, 7(4), 284-306.
Bloom, B. (1956). Taxonomy of Educational Objectives. The Classification of Educational Goals. Longmans.
Cartwright, N., Shomar, T. & Suárez, M. (1995). The Tool Box of Science. Tools for the Building of Models with a Superconductivity Example. En William E. Herfel, Władysław Krajewski, Ilkka Niiniluoto & Ryszard Wójcicki (Eds.), Theories and Models in Scientific Processes, Poznan Studies in the Philosophy of the Sciences and the Humanities Series, Volume 44, pp. 137-149. Rodopi.
Cassini, A. (2016). Modelos científicos. Diccionario Interdisciplinar Austral (DIA). http://dia.austral.edu.ar/Modelos
Cooper, G. (1996). Theoretical Modeling and Biological Laws. Philosophy of Science, 63, S28-S35.
D’Agostini, F. (2000). Analíticos y continentales. Guía de la filosofía de los últimos treinta años. Ediciones Cátedra.
Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. John Murray.
de Regt, H. W. & Dieks, D. (2005). A Contextual Approach to Scientific Understanding. Synthese, 144(1), 13-170. https://doi.org/10.1007/s11229-005-5000-4
de Regt, H. W., Leonelli, S. & Eigner, K. (2009). Focusing on Scientific Understanding. En H. W. de Regt, S. Leonelli & K. Eigner (Eds.), Scientific Understanding. Philosophical Perspectives, pp. 1-17. University of Pittsburgh Press.
Dewey, J. (1933). How We Think. A Restatement of the Relation of Reflective Thinking to the Educative Process. D. C. Heath and Company.
Dewey, J. (1944). Democracy and Education. Free Press.
Diéguez, A. (2013). La función explicativa de los modelos en biología. Contrastes. Revista Internacional de Filosofía, 18, 41-54.
Elgin, C. Z. (2009). Is Understanding Factive? En A. Haddock, A. Millar & D. Pritchard (Eds.), Epistemic Value, pp. 322-329. Oxford University Press.
Elgin, C. Z. (2016). From Knowledge to Understanding. En S. Hetherington (Ed.), Epistemology Futures, pp. 199-215. Oxford University Press.
Gadamer, H.-G. (1960). Wahrheit und Methode. Grundzüge einer Philosophischen Hermeneutik. J. C. B. Mohr.
Grimm, S. R. (2012). The Value of Understanding. Philosophy Compass, 7(2), 103-117. https://doi.org/10.1111/j.1747-9991.2011.00460.x
Grimm, S. R. (2017). Understanding and Transparency. En S. R. Grimm, C. Baumberger & A. S. (Eds.), Explaining Understanding. New Perspectives from Epistemology and Philosophy of Science (pp. 212-229). Routledge.
Godfrey-Smith, P. (2006). The Strategy of Model-Based Science. Biology and Philosophy, 21(5), 725-740. https://doi.org/10.1007/s10539-006-9054-6
Hacking, I. (1983). Representing and Intervening. Introductory Topics in the Philosophy of Natural Science. Cambridge University Press.
Hedström, P. & Manzo, G. (2015). Recent Trends in Agent-Based Computational Research: A Brief Introduction. Sociological Methods & Research, 44(2), 179-85.
Hegselmann, R. & Krause, U. (2002). Opinion Dynamics and Bounded Confidence Models, Analysis, and Simulation. Journal of Artificial Societies and Social Simulation, 5(3), 1-33.
Jones, M. R. (2005). Idealization and Abstraction: A Framework. En M. R. Jones & N. Cartwright (Eds.), Idealization XII: Correcting the Model. Idealization and Abstraction in the Sciencies, pp. 173-218. Rodopi.
Kitcher, P. (1981). Explanatory Unification. Philosophy of Science, 48(4), 507-531.
Kitcher, P. (1989). Explanatory Unification and the Causal Structure of the World. En P. Kitcher & W. Salmon (Eds.), Scientific Explanation, pp. 410-505. University of Minnesota Press.
Klein, D., Marx, J. & Fischbach, K. (2018). Agent-Based Modeling in Social Science History and Philosophy: An Introduction. Historical Social Research, 43(1), 243-253. https://doi.org/10.12759/hsr.43.2018.1.7-27
Knuuttila, T. & Merz, M. (2009). Understanding by Modeling. An Objectual Approach. En H. W. de Regt, S. Leonelli & K. Eigner (Eds.), Scientific Understanding. Philosophical Perspectives, pp. 146-168. University of Pittsburgh Press.
Knuuttila, T. (2011). Modelling and Representing: An Artefactual Approach to Model-Based Representation. Studies in History and Philosophy of Science, 42(2), 262-271. https://doi.org/10.1016/j.shpsa.2010.11.034
Kvanvig, J. (2003). The Value of Knowledge and the Pursuit of Understanding. Cambridge University Press.
Kvanvig, J. (2005). Truth is Not the Primary Epistemic Goal. En M. Steup & E. Sosa (Eds.), Contemporary Debates in Epistemology, pp. 285-296. Blackwell.
Kvanvig, J. (2009). The Value of Understanding. En A. Haddock, A. Millar & D. Pritchard (Eds.), Epistemic Value, pp. 95-111. Oxford University Press.
Leonelli, S. (2009). Understanding in Biology: The Impure Nature of Biological Knowledge. En H. W. de Regt, S. Leonelli & K. Eigner (Eds.), Scientific Understanding. Philosophical Perspectives, pp. 189-209. University of Pittsburgh Press.
Lopez-Orellana, Rodrigo (2020). Sobre la modelización y la comprensión científicas. Un enfoque inferencial y dinámico aplicado al modelo evo-devo Polypterus de la plasticidad fenotípica [Tesis doctoral]. Universidad de Salamanca.
Lopez-Orellana, R. & Cortés-García, D. (2019). On Understanding and Modeling in Evo-Devo. An Analysis of the Polypterus Model of Phenotypic Plasticity. En A. Nepomuceno Fernández, L. Magnani, F. Salguero-Lamillar, C. Barés-Gómez & M. Fontaine (Eds.), Model-Based Reasoning in Science and Technology. Inferential Models for Logic, Language, Cognition and Computation, Vol. 49, pp. 138-152. Springer International Publishing.
Lopez-Orellana, Rodrigo & Redmond, Juan, (2021). Crítica a la Noción de Modelo de Patrick Suppes. Revista de Filosofía, 78, 135-155.
Lopez-Orellana, R., Redmond, J. & Cortés-García, D. (2019). An Inferential and Dynamic Approach to Modeling and Understanding in Biology. Revista de Humanidades de Valparaíso, (14), 315-334. https://doi.org/10.22370/rhv2019iss14pp315-334
MacLeod, M. & Nersessian, N. J. (2015). Modeling Systems-Level Dynamics: Understanding without Mechanistic Explanation in Integrative Systems Biology. Studies in History and Philosophy of Science Part C, 49, 1-11. https://doi.org/10.1016/j.shpsc.2014.10.004
Mäki, U. (2009). MISSing the World. Models as Isolations and Credible Surrogate Systems. Erkenntnis, 70, 29-43. https://doi.org/10.1007/s10670-008-9135-9
Morrison, M. (1999). Models as Autonomous Agents. En M. Morrison & M. S. Morgan (Eds.), Models as Mediators. Perspectives on Natural and Social Science, pp. 38-65. Cambridge University Press.
Morrison, M. (2005). Approximating the Real: The Role of Idealization in Physical Theory. En M. R. Jones & N. Cartwright (Eds.), Idealization XII: Correcting the Model. Idealization and Abstraction in the Sciences, pp. 145-172. Rodopi.
Morrison, M. & Morgan, M. S. (1999a). Introduction. En M. Morrison & M. S. Morgan (Eds.), Models as Mediators. Perspectives on Natural and Social Science, pp. 1-9. Cambridge University Press.
Morrison, M. & Morgan, M. S. (1999b). Models as Mediating Instruments. En M. Morrison & M. S. Morgan (Eds.), Models as Mediators. Perspectives on Natural and Social Science, pp. 10-37. Cambridge University Press.
Nersessian, N. J. (1999). Model-Based Reasoning in Conceptual Change. En L. Magnani, N. J. Nersessian & P. Thagard (Eds.), Model-B Reasoning in Scientific Discovery, pp. 5-22. Kluwer Academic/Plenum Publishers.
Newman, M. P. (2017). Theoretical Understanding in Science. British Journal for the Philosophy of Science, 68(2), 571-595.
Peirce, C. S. (1998). The Essential Peirce. Selected Philosophical Writings (1893-1913) (Vol. 2; T. P. E. Project, Ed.). Indiana University Press.
Plato. (1973). Theaetetus. Oxford University Press.
Pritchard, D. (2007). The Value of Knowledge. Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/knowledge-value/
Pritchard, D. (2008). Knowing the Answer, Understanding, and Epistemic Value. Grazer Philosophische Studien, 77(1), 325-339. https://doi.org/10.1163/18756735-90000852
Pritchard, D. (2010). Knowledge and Understanding. En A. Millar & A. Haddock (Eds.), The Nature and Value of Knowledge: Three Investigations, pp. 3-90. Oxford University Press.
Redmond, J. & Lopez-Orellana, R. (2022). ¿Razonamiento sustituto como pensamiento basado en la representación o en la lógica? ArtefaCToS. Revista de Estudios sobre la Ciencia y la Tecnología, 11(2), 191-207. https://doi.org/10.14201/art2022112191207
Squazzoni, F. (2010). The Impact of Agent-Based Models in the Social Sciences After 15 Years of Incursions. History of Economic Idea, 18(2), 197-233.
Stoljar, D. & Damnjanovic, N. (2010). The Deflationary Theory of Truth. Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/truth-deflationary/
Suárez, M. (2003). Scientific Representation: Against Similarity and Isomorphism. International Studies in the Philosophy of Science, 17(3), 225-244.
Suárez, M. (2004). An Inferential Conception of Scientific Representation. Philosophy of Science, 71(5), 767-779.
Sugden, R. (2000). Credible Worlds: The Status of Theoretical Models in Economics. Journal of Economic Methodology, 7(1), 1-31. https://doi.org/10.1080/135017800362220
Tschemplik, A. (2008). Knowledge and Self-Knowledge in Plato’s Theaetetus. Lexington Books.
von Wright, G. H. (1971). Explanation and Understanding. Routledge and Kegan Paul.
Wilkenfeld, D. A. (2013). Understanding as Representation Manipulability. Synthese, 190(6), 997-1016. https://doi.org/10.1007/s11229-011-0055-x
Woodward, J. (2013). Making Things Happen: A Theory of Causal Explanation. Oxford University Press.
Zagzebski, L. (2001). Recovering Understanding. En M. Steup (Ed.), Knowledge, Truth, and Duty: Essays on Epistemic Justification, Responsibility, and Virtue, pp. 235-256. Oxford University Press.
Zagzebski, L. (2009). On Epistemology. Wadsworth.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Rodrigo Lopez-Orellana
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
CF2 publica los trabajos bajo una licencia Creative Commons Atribución-Sin Derivar 4.0 Internacional (CC BY-ND 4.0), la cual permite la redistribución, comercial o no comercial, siempre y cuando la obra circule íntegra y sin cambios, dándole crédito a la autora original y a la primera publicación en la revista. Texto de la licencia:
https://creativecommons.org/licenses/by-nd/4.0/legalcode
Por el solo hecho de enviar un trabajo para su evaluación y publicación los autores ceden a la revista el derecho de la primera publicación bajo la licencia mencionada. Los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en CF2.