Forma, función y arquitectura biológica
Una propuesta para clasificar la evolución de la complejidad
DOI:
https://doi.org/10.35305/cf2.vi19.186Palabras clave:
forma, función , arquitectura biológica, adaptacionismo, evoluciónResumen
Los conceptos de evolución y cambio evolutivo son a la vez laxos y polisémicos: se aplican a fenómenos muy diferentes y no siempre se definen con precisión. La aplicación extendida del paradigma neo-darwinista clásico, además, suele imponer un esquema adaptacionista al análisis de los hechos evolutivos, en el cual las funciones juegan un papel lógicamente anterior a los rasgos y sus formas. En este artículo proponemos, como etapa previa a la formulación de hipótesis sobre las causas del cambio, un modelo de espacio forma-función que pueda responder a preguntas como cuándo se da un cambio en los rasgos de una arquitectura biológica y de qué tipo son estos cambios. Un modelo de este tipo nos permite ver claramente cuándo se da un cambio en la forma o en la función y qué alcance evolutivo tiene.
Citas
Amundson, R. (2001). Adaptation and optimality. En Orzack S.H. & Sober E. (Eds.), Adaptationism and Optimality (pp. 303–334). Cambridge University Press.
Appel, T. (1987). The Cuvier-Geoffroy Debate: French Biology in the Decades before Darwin. Oxford University Press.
Asma, S. T. (1996). Following form and function: A philosophical archaeology of life science. Northwestern University Press.
Banzhaf, W., Baumgaertner, B., Beslon, G., Doursat, R., Foster, J., McMullin, A., & White, L. (2016). Defining and simulating open-ended novelty: Requirements, guidelines, and challenges. Theory in Biosciences, 135(3), 131–161.
Bonner, J. T. (1998). The origins of multicellularity. Integr Biol, 1, 27–36.
Brandon, R. N. (2005). Evolutionary Modules: Conceptual Analyses and Empirical Hypotheses. En EW. Callebaut & D. Rasskin-Gutman (Eds.), Modularity. Understanding the Development and Evolution of Natural Complex Systems (pp. 51–60). The MIT Press.
Brigandt, I., & Love, A. C. (2012). Conceptualising evolutionary novelty: moving beyond definitional debates. J. Exp. Zool. (Mol. Dev. Evolution.), 318B, 417–427.
Burke, A.C. (1989). Development of the Turtle Carapace: Implications for the Evolution of a Novel Bauplan. Journal of Morphology, 199, 363–378.
Cain, A.J. (1989). The perfection of animals. Biological Journal of Linnean Society, 36, 3–29.
Callebaut W., & Rasskin-Gutman D. (2005). Modularity. Understanding the Development and Evolution of Natural Complex Systems. The MIT Press.
Canfield, J. v. (1990). The concept of function in biology. Philosophical Topics, 18(2), 29–53.
Christensen, W. D., & Bickhard, M. H. (2002). The Process Dynamics of Normative Function, The Monist. The Monist, 85(1), 3–28.
Colless, D. H. (1985). On “character” and related terms. Systematic Biology, 34(2), 229–233.
Craver, C. F. (2001). Role Functions, Mechanisms, and Hierarchy, Philosophy of Science. Philosophy of Science, 68, 53–74.
Crispo, E. (2007). The Baldwin effect and genetic assimilation: revisiting two mechanisms of evolutionary change mediated by phenotypic plasticity. Evolution, 61(11), 2469–2479.
Darwin, C. R. (1859). On the Origin of Species. John Murray.
Darwin, C. R. (1872). On the Origin of Species. John Murray (6th ed.).
Davies, J. A. (2016). Machines for living in: connections and contrasts between designed architecture and the development of living forms. Architectural Research Quarterly, 20(1), 45–50.
Erwin, D. H. (2015). Novelties and Innovations in the History of Life. Current Biology 25, R930-R940.
Godfrey-Smith, P. (1994). A Modern History Theory of Functions, Nous, 28, 344–362.
Gould, S.J. (2002). The Structure of Evolutionary Theory. The Belknap Press of Harvard University Press.
Grafen, A. (2002). A first formal link between the Price equation and an optimization program. J. Theor. Biol, 217, 75–91.
Hall, B.K. (2005). Consideration of the neural crest and its skeletal derivatives in the context of novelty/innovation. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304B(6), 548–557. https://doi.org/10.1002/jez.b.21057
Jablonka, E., & Lamb, M.J. (2005). Evolution in Four Dimensions. Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life. In Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life. The MIT Press.
Jablonka, E., Lamb, M. J., & Avital, E. (1998). “Lamarckian” mechanisms in darwinian evolution. Trends in Ecology & Evolution, 13(5), 206–210.
Kauffman, S. A. (1993). The Origins of Order. Self-Organization and Selection in Evolution. Oxford University Press.
Kauffman, S. A. (2000). Investigations. Oxford University Press.
Kingsolver, J., & Koehl, M. (1985). Aerodynamics, Thermoregulation, and the Evolution of Insect Wings-Differential Scaling and Evolutionary Change. Evolution, 39, 488–504.
Konishi, M., & Volman, S. F. (1990). Comparative Physiology of Sound Localization in Four Species of Owls. Brain Behavior and Evolution, 36, 196–215.
Konishi, M., & Volman, S. F. (1994). Adaptations for bi-coordinate sound localization in owls. Neural Basis of Behavioral Adaptations, 39, 1–11.
Laland, K. N., Uller, T., Feldman, M. W., Sterelny, K., & Müller G.B. Jablonka E. Odling-Smee J, M. A. (2015). The extended evolutionary synthesis: its structure, assumptions and predictions. The Extended Evolutionary Synthesis: Its Structure, Assumptions and Predictions. 282(20151019). http://dx.doi.org/10.1098/rspb.2015.1019
Lee, D. E., Cavener, D. R., & Bond, M. L. (2018). Seeing spots: quantifying mother-offspring similarity and assessing fitness consequences of coat pattern traits in a wild population of giraffes (Giraffa camelopardalis). PeerJ, 6, e5690. https://doi.org/10.7717/peerj.5690
Lieberman, B. S., & Eldredge, N. (2014). What is punctuated equilibrium? What is macroevolution? A Response to Pennell et al. Trend Ecologhi Evo, 29, 185–186.
Mayr, E. (1960). The emergence of Novelty. En Tax S. (Ed.), The evolution of life (pp. 349–380). University of Chicago Press.
McHorse, B. K., Biewener, A. A., & Pierce, S. E. (2017). Mechanics of evolutionary digit reduction in fossil horses (Equidae). Proc R Soc B, 284(1861), 20171174. https://doi.org/10.1098/rspb.2017.1174
McShea, D. W. (1991). Complexity and evolution: What Everybody Knows. Biol Philos, 6, 303–324.
McShea, D. W. (1996). Perspective: Metazoan Complexity and Evolution: Is there a Trend. Evolution, 50(2), 477–492.
McShea, D. W. (2001). The hierarchical structure of organisms: a scale and documentation of a trend in the maximum. Paleobiology, 27(2), 405–423.
McShea, D. W. (2005). The evolution of complexity without natural selection, a possible large-scale trend of the fourth kind. Paleobiology, 31(suppl.), 146–156.
McShea, D. W., & Brandon, R. (2010). Biology’s First Law: the tendency for diversity and complexity to increase in evolutionary systems. In The University of Chicago Press.
McShea, D. W., & Hordijk, W. (2013). Complexity by Subtraction. Evol, 40, 504–520.
McShea, D. W., & Venit, E. P. (2001). What is a Part. The Character Concept in Evolutionary Biology, 259–283.
Mitchell, M. (2009). Complexity: a guided tour. Oxford University Press.
Mivart, S. G. (1871). On the genesis of the species. Mcmillan.
Moczek, A. P. (2008). On the origins of novelty in development and evolution. BioEssays, 30, 432–477.
Mossio, M., Saborido, C., & Moreno, A. (2009). An Organizational Account of Biological Functions. Brit J Phil Sci, 60, 813–841.
Müller, G. B. (1990). Developmental mechanisms at the origin of morphological novelty. In M. H. Nitechi (Ed.), Evolutionary Innovations (pp. 99–130). University of Chicago Press.
Müller, G. B. (2007). Evo–devo: extending the evolutionary synthesis. Nat Rev Genet, 8(12), 943–949.
Müller, G. B. (2008). Evo-Devo as a discipline. En A. Minelli & G. Fusco (Eds.), Evolving Pathways: Key Themes in Evolutionary Developmental Biology (pp. 5–30). Cambridge University Press.
Müller, G. B., & Newman, S. A. (2005). The innovation triad: An EvoDevo agenda. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304(6). https://doi.org/10.1002/jez.b.21081
Müller, G. B., & Wagner G P. (1991). Novelty in evolution: restructuring the concept. Annu. Rev. Ecol. Syst. , 22, 229–256.
Odling-Smee FJ, Laland KN, & Feldman MW. (2022). Niche Construction: The Neglected Process in Evolution (MPB-37) (Monographs in Population Biology, 37). Princeton University Press.
Payne, R. S. (1971). Acoustic Location of Prey by Barn Owls (Tyto alba). J Exp Biol, 54, 535–573.
Prum, R. O. (1999). Development and evolutionary origin of feathers. J Exp Zool B, 285(4), 291–306.
Rasskin-Gutman D. (2005). Jumping Forms within Morphospace. En W. Callebaut & D. Rasskin-Gutman (Eds.), Modularity. Understanding the Development and Evolution of Natural Complex Systems (pp. 207–219). The MIT Press.
Saborido C. (2014). Diseño, Evolución y Organización. La Teleología en la Filosofía de las Ciencias Biológicas. Acta Scientiae,16(2), 284-309.
Schlichting, C. D., & Pigliucci, M. (1998). Phenotypic Evolution: A Reaction Norm Perspective. Sinauer.
Schlosser, G. (2005). Amphibian variations: the role of modules in mosaic evolution. En W. Callebaut & D. Rasskin-Gutman (Eds.), Modularity. Understanding the Development and Evolution of Natural Complex Systems (pp. 143–179). The MIT Press.
Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106(6), 467–482.
Simon, H. A., & Ando, A. (1961). Aggregation of Variables in Dynamic Systems. Econometrica, 29(2), 111. https://doi.org/10.2307/1909285
Sneppen, K., Bak, P., Flyvbjerg, H., & Jensen, M. H. (1995). Evolution as a self-organized critical phenomenon. Proceedings of the National Academy of Sciences of the United States of America, 92(11). https://doi.org/10.1073/pnas.92.11.5209
Tinbergen, N. (2010). On aims and methods of Ethology. Zeitschrift Für Tierpsychologie, 20(4), 410–433. https://doi.org/10.1111/j.1439-0310.1963.tb01161.x
Toquenaga, Y., & Wade, M. J. (1996). Sewall Wright meets Artificial Life: The origin and maintenance of evolutionary novelty. Trends in Ecology and Evolution, 11(11). https://doi.org/10.1016/0169-5347(96)20075-8
Valentine, J. W. (2004). On the Origin of Phyla. University of Chicago Press.
Waddington, C. H. (1956). Genetic assimilation of the Bithorax phenotype. Evolution, 10, 1–13.
Wagner, G. P. (2014). Homology, Genes, and Evolutionary Innovation. Princeton University Press.
Wagner, G. P., & Altenberg, L. (1996). Complex adaptations and the evolution of evolvability. Evolution, 50, 967–976.
West-Eberhard, M. J. (2003). Developmental Plasticity and Evolution. Oxford University Press.
Wickstead, B., & Gull, K. (2011). The evolution of the cytoskeleton. Journal of Cell Biology, 194(4), 513–525. https://doi.org/10.1083/jcb.201102065
Willmore, K. E. (2012). Evo edu. Outreach, 5, 219–230.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Cristian Saborido
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
CF2 publica los trabajos bajo una licencia Creative Commons Atribución-Sin Derivar 4.0 Internacional (CC BY-ND 4.0), la cual permite la redistribución, comercial o no comercial, siempre y cuando la obra circule íntegra y sin cambios, dándole crédito a la autora original y a la primera publicación en la revista. Texto de la licencia:
https://creativecommons.org/licenses/by-nd/4.0/legalcode
Por el solo hecho de enviar un trabajo para su evaluación y publicación los autores ceden a la revista el derecho de la primera publicación bajo la licencia mencionada. Los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en CF2.