Vanilla PP for Philosophers

A Primer on Predictive Processing

Authors

  • Wanja Wiese Johannes Gutenberg University Mainz (Mainz, Rhineland Palatinate, Germany)
  • Thomas Metzinger Johannes Gutenberg University Mainz (Mainz, Rhineland Palatinate, Germany)

DOI:

https://doi.org/10.35305/cf2.vi17.118

Keywords:

active inference, attention, bayesian inference, environmental seclusion, free energy principle, hierarchical processing, ideomotor principle, perception, perceptual inference, precision, prediction, prediction error minimization, predictive processing, predictive control, statistical estimation, top-down processing

References

Adams, R. A., Huys, Q. J. & Roiser, J. P. (2016). Computational psychiatry: Towards a mathematically informed understanding of mental illness. J Neurol Neurosurg Psychiatry, 87 (1), 53-63. https://dx.doi.org/10.1136/jnnp-2015-310737

Anderson, M. L. (2017). Of Bayes and bullets: An embodied, situated, targeting-based account of predictive processing. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.

Anderson, M. L. & Chemero, T. (2013). The problem with brain GUTs: Conflation of different senses of ‘’prediction’’ threatens metaphysical disaster. Behavioral and Brain Sciences, 36 (3), 204–205.

Badets, A., Koch, I. & Philipp, A. M. (2014). A review of ideomotor approaches to perception, cognition, action, and language: Advancing a cultural recycling hypothesis. Psychological Research, 80 (1), 1–15. https://dx.doi.org/10.1007/s00426-014-0643-8

Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P. & Friston, K. J. (2012). Canonical microcircuits for predictive coding. Neuron, 76 (4), 695-711. https://dx.doi.org/10.1016/j.neuron.2012.10.038

Bogacz, R. (2015). A tutorial on the free-energy framework for modelling perception and learning. Journal of Mathematical Psychology. https://dx.doi.org/10.1016/j.jmp.2015.11.003

Brodski, A., Paasch, G.-F., Helbling, S. & Wibral, M. (2015). The faces of predictive coding. The Journal of Neuroscience, 35 (24), 8997-9006. https://dx.doi.org/10.1523/jneurosci.1529-14.2015

Brook, A. (2013). Kant’s view of the mind and consciousness of self. En E. N. Zalta (Ed.) The Stanford Encyclopedia of Philosophy.

Bruineberg, J. (2017). Active inference and the primacy of the ‘I can’. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.

Bruineberg, J., Kiverstein, J. & Rietveld, E. (2016). The anticipating brain is not a scientist: The free-energy principle from an ecological-enactive perspective. Synthese, 1–28. https://dx.doi.org/10.1007/s11229-016-1239-1

Burr, C. (2017). Embodied decisions and the predictive brain. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.

Butz, M. V. (2017). Which structures are out there? Learning predictive compositional concepts based on social sensorimotor explorations. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.

Clark, A. (2013a). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36 (3), 181–204. https://dx.doi.org/10.1017/S0140525X12000477

Clark, A. (2013b). The many faces of precision (Replies to commentaries on ‘’Whatever next? Neural prediction, situated agents, and the future of cognitive science’’). Frontiers in Psychology, 4, 270. https://dx.doi.org/10.3389/fpsyg.2013.00270

Clark, A. (2013c). Are we predictive engines? Perils, prospects, and the puzzle of the porous perceiver. Behavioral and Brain Sciences, 36 (3), 233–253. https://dx.doi.org/10.1017/S0140525X12002440

Clark, A. (2015). Radical predictive processing. The Southern Journal of Philosophy, 53, 3–27. https://dx.doi.org/10.1111/sjp.12120

Clark, A. (2016). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford University Press.

Clark, A. (2017). How to knit your own Markov blanket: Resisting the second law with metamorphic minds. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.

Clark, A. (En prensa). Busting out: Predictive brains, embodied minds, and the puzzle of the evidentiary veil. Noûs. https://dx.doi.org/10.1111/nous.12140

Clowes, M. B. (1969). Pictorial relationships – A syntactic approach. En B. Meltzer & D. Michie (Eds.) (pp. 361–383). Edinburgh University Press.

Colombo, M. (2017). Social motivation in computational neuroscience: Or if brains are prediction machines then the Humean theory of motivation is false. En J. Kieverstein (Ed.) Routledge handbook of philosophy of the social mind. Routledge.

Dennett, D. C. (2013). Intuition pumps and other tools for thinking. Norton & Company.

Dewhurst, J. (2017). Folk psychology and the Bayesian brain. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.

Downey, A. (2017). Radical sensorimotor enactivism & predictive processing. Providing a conceptual framework for the scientific study of conscious perception. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.

Dołega, K. (2017). Moderate predictive processing. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.

Drayson, Z. (2017). Modularity and the predictive mind. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.

Egan, F. (2014). How to think about mental content. Philosophical Studies, 170 (1), 115-135. https://dx.doi.org/10.1007/s11098-013-0172-0

Eliasmith, C. (2000). How neurons mean: A neurocomputational theory of representational content. PhD dissertation, Washington University in St. Louis. Department of Philosophy.

Engel, A. K., Fries, P. & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nat Rev Neurosci, 2 (10), 704–716.

Fabry, R. E. (2017a). Predictive processing and cognitive development. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.

Fabry, R. E. (2017b). Transcending the evidentiary boundary: Prediction error minimization, embodied interaction, and explanatory pluralism. Philosophical Psychology, 1–20. https://dx.doi.org/10.1080/09515089.2016.1272674

Feldman, H. & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4. https://dx.doi.org/10.3389/fnhum.2010.00215

Friston, K. (2003). Learning and inference in the brain. Neural Networks, 16 (9), 1325–1352.

Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360 (1456), 815-836. https://dx.doi.org/10.1098/rstb.2005.1622

Friston, K. (2008). Hierarchical models in the brain. PLoS Computational Biology, 4 (11), e1000211. https://dx.doi.org/10.1371/journal.pcbi.1000211

Friston, K. (2009). The free-energy principle: A rough guide to the brain? Trends in Cognitive Sciences, 13 (7), 293–301. https://dx.doi.org/10.1016/j.tics.2009.04.005

Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11 (2), 127–138. https://dx.doi.org/10.1038/nrn2787

Friston, K. & Buzsáki, G. (2016). The functional anatomy of time: What and when in the brain. Trends in Cognitive Sciences, 20 (7), 500–511. https://dx.doi.org/10.1016/j.tics.2016.05.001

Friston, K. & Kiebel, S. (2009). Predictive coding under the free-energy principle. Philosophical Transactions of the Royal Society B: Biological Sciences, 364 (1521), 1211–1221. https://dx.doi.org/10.1098/rstb.2008.0300

Friston, K. J. & Stephan, K. E. (2007). Free-energy and the brain. Synthese, 159 (3), 417-458. https://dx.doi.org/10.1007/s11229-007-9237-y

Friston, K., Mattout, J. & Kilner, J. (2011). Action understanding and active inference. Biological Cybernetics, 104 (1-2), 137–160. https://dx.doi.org/10.1007/s00422-011-0424-z

Friston, K., Samothrakis, S. & Montague, R. (2012a). Active inference and agency: Optimal control without cost functions. Biological Cybernetics, 106 (8), 523-541. https://dx.doi.org/10.1007/s00422-012-0512-8

Friston, K., Adams, R., Perrinet, L. & Breakspear, M. (2012b). Perceptions as hypotheses: Saccades as experiments. Frontiers in Psychology, 3 (151). https://dx.doi.org/10.3389/fpsyg.2012.00151

Friston, K. J., Stephan, K. E., Montague, R. & Dolan, R. J. (2014). Computational psychiatry: The brain as a phantastic organ. The Lancet Psychiatry, 1 (2), 148–158. https://dx.doi.org/10.1016/S2215-0366(14)70275-5

Giordanetti, P., Pozzo, R. & Sgarbi, M. (2012). Kant‘s philosophy of the unconscious. De Gruyter.

Gonzalez-Gadea, M. L., Chennu, S., Bekinschtein, T. A., Rattazzi, A., Beraudi, A., Tripicchio, P., Moyano, B., Soffita, Y., Steinberg, L., Adolfi, F., Sigman, M., Marino, J., Manes, F. & Ibanez, A. (2015). Predictive coding in autism spectrum disorder and attention deficit hyperactivity disorder. Journal of Neurophysiology, 114 (5), 2625-2636. https://dx.doi.org/10.1152/jn.00543.2015

Gregory, R. L. (1980). Perceptions as hypotheses. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 290 (1038), 181–197.

Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27 (3), 377–396.

Gładziejewski, P. (2016). Predictive coding and representationalism. Synthese, 559–582. https://dx.doi.org/10.1007/s11229-015-0762-9

Harkness, D. L. & Keshava, A. (2017). Moving from the what to the how and where – Bayesian models and predictive processing. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.

Herbart, J. F. (1825). Psychologie als Wissenschaft neu gegründet auf Erfahrung, Metaphysik und Mathematik. Zweiter, analytischer Teil. Unzer.

Hohwy, J. (2010). The hypothesis testing brain: Some philosophical applications. En W. Christensen, E. Schier & J. Sutton (Eds.) Proceedings of the 9th conference of the Australasian society for cognitive science (pp. 135–144). Macquarie Centre for Cognitive Science. https://dx.doi.org/10.5096/ASCS200922

Hohwy, J. (2012). Attention and conscious perception in the hypothesis testing brain. Frontiers in Psychology, 3. https://dx.doi.org/10.3389/fpsyg.2012.00096

Hohwy, J. (2013). The predictive mind. Oxford University Press.

Hohwy, J. (2016). The self-evidencing brain. Noûs, 50 (2), 259–285. https://dx.doi.org/10.1111/nous.12062

Hohwy, J. (2017). How to entrain your evil demon. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.

Hommel, B. (2015). The theory of event coding (TEC) as embodied-cognition framework. Frontiers in Psychology, 6. https://dx.doi.org/10.3389/fpsyg.2015.01318

Hommel, B., Müsseler, J., Aschersleben, G. & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–878. https://dx.doi.org/10.1017/S0140525X01000103

Horn, B. K. P. (1980). Derivation of invariant scene characteristics from images (pp. 371–376). https://dx.doi.org/10.1145/1500518.1500579

James, W. (1890). The principles of psychology. Henry Holt.

Kant, I. (1998). Kritik der reinen Vernunft. Meiner.

Kiefer, A. (2017). Literal perceptual inference. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.

Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350 (6266), 1332-1338. https://dx.doi.org/10.1126/science.aab3050

Lee, T. S. & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A, 20 (7), 1434–1448. https://dx.doi.org/10.1364/JOSAA.20.001434

Lenoir, T. (2006). Operationalizing Kant: Manifolds, models, and mathematics in Helmholtz’s theories of perception. En M. Friedman & A. Nordmann (Eds.) The Kantian legacy in nineteenth-century science (pp. 141–210). Cambridge, MA: MIT Press.

Limanowski, J. (2017). (Dis-)attending to the body. Action and self-experience in the active inference framework. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.

Lotze, R. H. (1852). Medicinische Psychologie oder Physiologie der Seele. Weidmann’sche Buchhandlung.

Metzinger, T. (2004). Being no one: The self-model theory of subjectivity. MIT Press.

Metzinger, T. (2017). The problem of mental action. Predictive control without sensory sheets. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.

Palmer, C. J., Paton, B., Kirkovski, M., Enticott, P. G. & Hohwy, J. (2015). Context sensitivity in action decreases along the autism spectrum: A predictive processing perspective. Proceedings of the Royal Society of London B: Biological Sciences, 282 (1802). https://dx.doi.org/10.1098/rspb.2014.1557

Prinz, W. (1990). A common coding approach to perception and action. En O. Neumann & W. Prinz (Eds.) Relationships between perception and action (pp. 167–201). Heidelberg: Springer.

Quadt, L. (2017). Action-oriented predictive processing and social cognition. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.

Seth, A. K. (2015). The cybernetic Bayesian brain: From interoceptive inference to sensorimotor contingencies. En T. Metzinger & J. M. Windt (Eds.) Open MIND. MIND Group. https://dx.doi.org/10.15502/9783958570108.

Shi, Y. Q. & Sun, H. (1999). Image and video compression for multimedia engineering: fundamentals, algorithms, and standards. CRC Press.

Sloman, A. (1984). Experiencing omputation: A tribute to Max Clowes. En M. Yazdani (Ed.) New horizons in educational computing (pp. 207–219). John Wiley & Sons.

Snowdon, P. (1992). How to interpret ‘direct perception’. En T. Crane (Ed.) The contents of experience (pp. 48–78). Cambridge University Press.

Spratling, M. W. (2016). A review of predictive coding algorithms. Brain and Cognition. https://dx.doi.org/10.1016/j.bandc.2015.11.003

Stock, A. & Stock, C. (2004). A short history of ideo-motor action. Psychological Research, 68, 176–188. https://dx.doi.org/10.1007/s00426-003-0154-5

Swanson, L. R. (2016). The predictive processing paradigm has roots in Kant. Frontiers in Systems Neuroscience, 10, 79. https://dx.doi.org/10.3389/fnsys.2016.00079

Todorov, E. (2009). Parallels between sensory and motor information processing. En M. S. Gazzaniga (Ed.) The cognitive neurosciences. 4th edition (pp. 613–623). MIT Press.

Van de Cruys, S., Evers, K., Van der Hallen, R., van Eylen, L., Boets, B., de-Wit, L. & Wagemans, J. (2014). Precise minds in uncertain worlds: Predictive coding in autism. Psychological Review, 121 (4), 649–675. https://dx.doi.org/10.1037/a0037665

Van Doorn, G., Hohwy, J. & Symmons, M. (2014). Can you tickle yourself if you swap bodies with someone else? Consciousness and Cognition, 23, 1-11. http://dx.doi.org/10.1016/j.concog.2013.10.009

Van Doorn, G., Paton, B., Howell, J. & Hohwy, J. (2015). Attenuated self-tickle sensation even under trajectory perturbation. Consciousness and Cognition, 36, 147–153. https://dx.doi.org/10.1016/j.concog.2015.06.016

Von Helmholtz, H. (1855). Ueber das Sehen des Menschen. Leopold Voss.

Von Helmholtz, H. (1867). Handbuch der physiologischen Optik. Leopold Voss.

Von Helmholtz, H. (1959[1879/1887]). Die Tatsachen in der Wahrnehmung. Zählen und Messen. Wissenschaftliche Buchgesellschaft.

Von Helmholtz, H. (1985[1925]). Helmholtz‘s treatise on physiological optics. Gryphon Editions.

Von Holst, E. & Mittelstaedt, H. (1950). Das Reafferenzprinzip. Die Naturwissenschaften, 37 (20), 464–476.

Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L. & Dehaene, S. (2011). Evidence for a hierarchy of predictions and prediction errors in human cortex. Proc Natl Acad Sci U S A, 108 (51), 20754-9. https://dx.doi.org/10.1073/pnas.1117807108

Wiese, W. (2016). Action is enabled by systematic misrepresentations. Erkenntnis. https://dx.doi.org/10.1007/s10670-016-9867-x

Zellner, A. (1988). Optimal information processing and Bayes’s theorem. The American Statistician, 42 (4), 278–280. https://dx.doi.org/10.2307/2685143

Published

2021-09-09

How to Cite

Wiese, W., & Metzinger, T. (2021). Vanilla PP for Philosophers: A Primer on Predictive Processing. Cuadernos Filosóficos / Segunda Época, (17). https://doi.org/10.35305/cf2.vi17.118

Issue

Section

Translations