PP vainilla para filósofos
Un manual sobre Procesamiento Predictivo
DOI:
https://doi.org/10.35305/cf2.vi17.118Palavras-chave:
inferencia activa, atención, inferencia bayesiana, aislamiento ambiental, principio de energÃa libre, procesamiento jerárquico, principio ideomotor, percepción, inferencia perceptiva, precisión, predicción, minimización del error de predicción, procesamiento predictivo, control predictivo, estimación estadÃstica, procesamiento de arriba hacia abajo [top-down]Referências
Adams, R. A., Huys, Q. J. & Roiser, J. P. (2016). Computational psychiatry: Towards a mathematically informed understanding of mental illness. J Neurol Neurosurg Psychiatry, 87 (1), 53-63. https://dx.doi.org/10.1136/jnnp-2015-310737
Anderson, M. L. (2017). Of Bayes and bullets: An embodied, situated, targeting-based account of predictive processing. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.
Anderson, M. L. & Chemero, T. (2013). The problem with brain GUTs: Conflation of different senses of ‘’prediction’’ threatens metaphysical disaster. Behavioral and Brain Sciences, 36 (3), 204–205.
Badets, A., Koch, I. & Philipp, A. M. (2014). A review of ideomotor approaches to perception, cognition, action, and language: Advancing a cultural recycling hypothesis. Psychological Research, 80 (1), 1–15. https://dx.doi.org/10.1007/s00426-014-0643-8
Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P. & Friston, K. J. (2012). Canonical microcircuits for predictive coding. Neuron, 76 (4), 695-711. https://dx.doi.org/10.1016/j.neuron.2012.10.038
Bogacz, R. (2015). A tutorial on the free-energy framework for modelling perception and learning. Journal of Mathematical Psychology. https://dx.doi.org/10.1016/j.jmp.2015.11.003
Brodski, A., Paasch, G.-F., Helbling, S. & Wibral, M. (2015). The faces of predictive coding. The Journal of Neuroscience, 35 (24), 8997-9006. https://dx.doi.org/10.1523/jneurosci.1529-14.2015
Brook, A. (2013). Kant’s view of the mind and consciousness of self. En E. N. Zalta (Ed.) The Stanford Encyclopedia of Philosophy.
Bruineberg, J. (2017). Active inference and the primacy of the ‘I can’. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.
Bruineberg, J., Kiverstein, J. & Rietveld, E. (2016). The anticipating brain is not a scientist: The free-energy principle from an ecological-enactive perspective. Synthese, 1–28. https://dx.doi.org/10.1007/s11229-016-1239-1
Burr, C. (2017). Embodied decisions and the predictive brain. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.
Butz, M. V. (2017). Which structures are out there? Learning predictive compositional concepts based on social sensorimotor explorations. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.
Clark, A. (2013a). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36 (3), 181–204. https://dx.doi.org/10.1017/S0140525X12000477
Clark, A. (2013b). The many faces of precision (Replies to commentaries on ‘’Whatever next? Neural prediction, situated agents, and the future of cognitive science’’). Frontiers in Psychology, 4, 270. https://dx.doi.org/10.3389/fpsyg.2013.00270
Clark, A. (2013c). Are we predictive engines? Perils, prospects, and the puzzle of the porous perceiver. Behavioral and Brain Sciences, 36 (3), 233–253. https://dx.doi.org/10.1017/S0140525X12002440
Clark, A. (2015). Radical predictive processing. The Southern Journal of Philosophy, 53, 3–27. https://dx.doi.org/10.1111/sjp.12120
Clark, A. (2016). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford University Press.
Clark, A. (2017). How to knit your own Markov blanket: Resisting the second law with metamorphic minds. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.
Clark, A. (En prensa). Busting out: Predictive brains, embodied minds, and the puzzle of the evidentiary veil. Noûs. https://dx.doi.org/10.1111/nous.12140
Clowes, M. B. (1969). Pictorial relationships – A syntactic approach. En B. Meltzer & D. Michie (Eds.) (pp. 361–383). Edinburgh University Press.
Colombo, M. (2017). Social motivation in computational neuroscience: Or if brains are prediction machines then the Humean theory of motivation is false. En J. Kieverstein (Ed.) Routledge handbook of philosophy of the social mind. Routledge.
Dennett, D. C. (2013). Intuition pumps and other tools for thinking. Norton & Company.
Dewhurst, J. (2017). Folk psychology and the Bayesian brain. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.
Downey, A. (2017). Radical sensorimotor enactivism & predictive processing. Providing a conceptual framework for the scientific study of conscious perception. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.
Dołega, K. (2017). Moderate predictive processing. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.
Drayson, Z. (2017). Modularity and the predictive mind. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.
Egan, F. (2014). How to think about mental content. Philosophical Studies, 170 (1), 115-135. https://dx.doi.org/10.1007/s11098-013-0172-0
Eliasmith, C. (2000). How neurons mean: A neurocomputational theory of representational content. PhD dissertation, Washington University in St. Louis. Department of Philosophy.
Engel, A. K., Fries, P. & Singer, W. (2001). Dynamic predictions: Oscillations and synchrony in top-down processing. Nat Rev Neurosci, 2 (10), 704–716.
Fabry, R. E. (2017a). Predictive processing and cognitive development. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.
Fabry, R. E. (2017b). Transcending the evidentiary boundary: Prediction error minimization, embodied interaction, and explanatory pluralism. Philosophical Psychology, 1–20. https://dx.doi.org/10.1080/09515089.2016.1272674
Feldman, H. & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4. https://dx.doi.org/10.3389/fnhum.2010.00215
Friston, K. (2003). Learning and inference in the brain. Neural Networks, 16 (9), 1325–1352.
Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360 (1456), 815-836. https://dx.doi.org/10.1098/rstb.2005.1622
Friston, K. (2008). Hierarchical models in the brain. PLoS Computational Biology, 4 (11), e1000211. https://dx.doi.org/10.1371/journal.pcbi.1000211
Friston, K. (2009). The free-energy principle: A rough guide to the brain? Trends in Cognitive Sciences, 13 (7), 293–301. https://dx.doi.org/10.1016/j.tics.2009.04.005
Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews Neuroscience, 11 (2), 127–138. https://dx.doi.org/10.1038/nrn2787
Friston, K. & Buzsáki, G. (2016). The functional anatomy of time: What and when in the brain. Trends in Cognitive Sciences, 20 (7), 500–511. https://dx.doi.org/10.1016/j.tics.2016.05.001
Friston, K. & Kiebel, S. (2009). Predictive coding under the free-energy principle. Philosophical Transactions of the Royal Society B: Biological Sciences, 364 (1521), 1211–1221. https://dx.doi.org/10.1098/rstb.2008.0300
Friston, K. J. & Stephan, K. E. (2007). Free-energy and the brain. Synthese, 159 (3), 417-458. https://dx.doi.org/10.1007/s11229-007-9237-y
Friston, K., Mattout, J. & Kilner, J. (2011). Action understanding and active inference. Biological Cybernetics, 104 (1-2), 137–160. https://dx.doi.org/10.1007/s00422-011-0424-z
Friston, K., Samothrakis, S. & Montague, R. (2012a). Active inference and agency: Optimal control without cost functions. Biological Cybernetics, 106 (8), 523-541. https://dx.doi.org/10.1007/s00422-012-0512-8
Friston, K., Adams, R., Perrinet, L. & Breakspear, M. (2012b). Perceptions as hypotheses: Saccades as experiments. Frontiers in Psychology, 3 (151). https://dx.doi.org/10.3389/fpsyg.2012.00151
Friston, K. J., Stephan, K. E., Montague, R. & Dolan, R. J. (2014). Computational psychiatry: The brain as a phantastic organ. The Lancet Psychiatry, 1 (2), 148–158. https://dx.doi.org/10.1016/S2215-0366(14)70275-5
Giordanetti, P., Pozzo, R. & Sgarbi, M. (2012). Kant‘s philosophy of the unconscious. De Gruyter.
Gonzalez-Gadea, M. L., Chennu, S., Bekinschtein, T. A., Rattazzi, A., Beraudi, A., Tripicchio, P., Moyano, B., Soffita, Y., Steinberg, L., Adolfi, F., Sigman, M., Marino, J., Manes, F. & Ibanez, A. (2015). Predictive coding in autism spectrum disorder and attention deficit hyperactivity disorder. Journal of Neurophysiology, 114 (5), 2625-2636. https://dx.doi.org/10.1152/jn.00543.2015
Gregory, R. L. (1980). Perceptions as hypotheses. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 290 (1038), 181–197.
Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27 (3), 377–396.
Gładziejewski, P. (2016). Predictive coding and representationalism. Synthese, 559–582. https://dx.doi.org/10.1007/s11229-015-0762-9
Harkness, D. L. & Keshava, A. (2017). Moving from the what to the how and where – Bayesian models and predictive processing. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.
Herbart, J. F. (1825). Psychologie als Wissenschaft neu gegründet auf Erfahrung, Metaphysik und Mathematik. Zweiter, analytischer Teil. Unzer.
Hohwy, J. (2010). The hypothesis testing brain: Some philosophical applications. En W. Christensen, E. Schier & J. Sutton (Eds.) Proceedings of the 9th conference of the Australasian society for cognitive science (pp. 135–144). Macquarie Centre for Cognitive Science. https://dx.doi.org/10.5096/ASCS200922
Hohwy, J. (2012). Attention and conscious perception in the hypothesis testing brain. Frontiers in Psychology, 3. https://dx.doi.org/10.3389/fpsyg.2012.00096
Hohwy, J. (2013). The predictive mind. Oxford University Press.
Hohwy, J. (2016). The self-evidencing brain. Noûs, 50 (2), 259–285. https://dx.doi.org/10.1111/nous.12062
Hohwy, J. (2017). How to entrain your evil demon. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.
Hommel, B. (2015). The theory of event coding (TEC) as embodied-cognition framework. Frontiers in Psychology, 6. https://dx.doi.org/10.3389/fpsyg.2015.01318
Hommel, B., Müsseler, J., Aschersleben, G. & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–878. https://dx.doi.org/10.1017/S0140525X01000103
Horn, B. K. P. (1980). Derivation of invariant scene characteristics from images (pp. 371–376). https://dx.doi.org/10.1145/1500518.1500579
James, W. (1890). The principles of psychology. Henry Holt.
Kant, I. (1998). Kritik der reinen Vernunft. Meiner.
Kiefer, A. (2017). Literal perceptual inference. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.
Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. Science, 350 (6266), 1332-1338. https://dx.doi.org/10.1126/science.aab3050
Lee, T. S. & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A, 20 (7), 1434–1448. https://dx.doi.org/10.1364/JOSAA.20.001434
Lenoir, T. (2006). Operationalizing Kant: Manifolds, models, and mathematics in Helmholtz’s theories of perception. En M. Friedman & A. Nordmann (Eds.) The Kantian legacy in nineteenth-century science (pp. 141–210). Cambridge, MA: MIT Press.
Limanowski, J. (2017). (Dis-)attending to the body. Action and self-experience in the active inference framework. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.
Lotze, R. H. (1852). Medicinische Psychologie oder Physiologie der Seele. Weidmann’sche Buchhandlung.
Metzinger, T. (2004). Being no one: The self-model theory of subjectivity. MIT Press.
Metzinger, T. (2017). The problem of mental action. Predictive control without sensory sheets. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.
Palmer, C. J., Paton, B., Kirkovski, M., Enticott, P. G. & Hohwy, J. (2015). Context sensitivity in action decreases along the autism spectrum: A predictive processing perspective. Proceedings of the Royal Society of London B: Biological Sciences, 282 (1802). https://dx.doi.org/10.1098/rspb.2014.1557
Prinz, W. (1990). A common coding approach to perception and action. En O. Neumann & W. Prinz (Eds.) Relationships between perception and action (pp. 167–201). Heidelberg: Springer.
Quadt, L. (2017). Action-oriented predictive processing and social cognition. En T. Metzinger & W. Wiese (Eds.) Philosophy and predictive processing. MIND Group.
Seth, A. K. (2015). The cybernetic Bayesian brain: From interoceptive inference to sensorimotor contingencies. En T. Metzinger & J. M. Windt (Eds.) Open MIND. MIND Group. https://dx.doi.org/10.15502/9783958570108.
Shi, Y. Q. & Sun, H. (1999). Image and video compression for multimedia engineering: fundamentals, algorithms, and standards. CRC Press.
Sloman, A. (1984). Experiencing omputation: A tribute to Max Clowes. En M. Yazdani (Ed.) New horizons in educational computing (pp. 207–219). John Wiley & Sons.
Snowdon, P. (1992). How to interpret ‘direct perception’. En T. Crane (Ed.) The contents of experience (pp. 48–78). Cambridge University Press.
Spratling, M. W. (2016). A review of predictive coding algorithms. Brain and Cognition. https://dx.doi.org/10.1016/j.bandc.2015.11.003
Stock, A. & Stock, C. (2004). A short history of ideo-motor action. Psychological Research, 68, 176–188. https://dx.doi.org/10.1007/s00426-003-0154-5
Swanson, L. R. (2016). The predictive processing paradigm has roots in Kant. Frontiers in Systems Neuroscience, 10, 79. https://dx.doi.org/10.3389/fnsys.2016.00079
Todorov, E. (2009). Parallels between sensory and motor information processing. En M. S. Gazzaniga (Ed.) The cognitive neurosciences. 4th edition (pp. 613–623). MIT Press.
Van de Cruys, S., Evers, K., Van der Hallen, R., van Eylen, L., Boets, B., de-Wit, L. & Wagemans, J. (2014). Precise minds in uncertain worlds: Predictive coding in autism. Psychological Review, 121 (4), 649–675. https://dx.doi.org/10.1037/a0037665
Van Doorn, G., Hohwy, J. & Symmons, M. (2014). Can you tickle yourself if you swap bodies with someone else? Consciousness and Cognition, 23, 1-11. http://dx.doi.org/10.1016/j.concog.2013.10.009
Van Doorn, G., Paton, B., Howell, J. & Hohwy, J. (2015). Attenuated self-tickle sensation even under trajectory perturbation. Consciousness and Cognition, 36, 147–153. https://dx.doi.org/10.1016/j.concog.2015.06.016
Von Helmholtz, H. (1855). Ueber das Sehen des Menschen. Leopold Voss.
Von Helmholtz, H. (1867). Handbuch der physiologischen Optik. Leopold Voss.
Von Helmholtz, H. (1959[1879/1887]). Die Tatsachen in der Wahrnehmung. Zählen und Messen. Wissenschaftliche Buchgesellschaft.
Von Helmholtz, H. (1985[1925]). Helmholtz‘s treatise on physiological optics. Gryphon Editions.
Von Holst, E. & Mittelstaedt, H. (1950). Das Reafferenzprinzip. Die Naturwissenschaften, 37 (20), 464–476.
Wacongne, C., Labyt, E., van Wassenhove, V., Bekinschtein, T., Naccache, L. & Dehaene, S. (2011). Evidence for a hierarchy of predictions and prediction errors in human cortex. Proc Natl Acad Sci U S A, 108 (51), 20754-9. https://dx.doi.org/10.1073/pnas.1117807108
Wiese, W. (2016). Action is enabled by systematic misrepresentations. Erkenntnis. https://dx.doi.org/10.1007/s10670-016-9867-x
Zellner, A. (1988). Optimal information processing and Bayes’s theorem. The American Statistician, 42 (4), 278–280. https://dx.doi.org/10.2307/2685143
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2021 Wanja Wiese, Thomas Metzinger
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NoDerivatives 4.0 International License.
CF2 publica los trabajos bajo una licencia Creative Commons Atribución-Sin Derivar 4.0 Internacional (CC BY-ND 4.0), la cual permite la redistribución, comercial o no comercial, siempre y cuando la obra circule íntegra y sin cambios, dándole crédito a la autora original y a la primera publicación en la revista. Texto de la licencia:
https://creativecommons.org/licenses/by-nd/4.0/legalcode
Por el solo hecho de enviar un trabajo para su evaluación y publicación los autores ceden a la revista el derecho de la primera publicación bajo la licencia mencionada. Los autores pueden realizar otros acuerdos contractuales independientes y adicionales para la distribución no exclusiva de la versión del artículo publicado en esta revista (por ejemplo incluirlo en un repositorio institucional o publicarlo en un libro) siempre que indiquen claramente que el trabajo se publicó por primera vez en CF2.