Logical and non-representational point of view of surrogative reasoning

Authors

  • Juan Redmond University of Valparaíso (Valparaíso,Valparaíso, Chile)
  • Rodrigo Lopez-Orellana University of Salamanca (Salamanca, Castilla y León, España)
  • Loreto Paniagua University of Valparaíso (Valparaíso,Valparaíso, Chile)

DOI:

https://doi.org/10.35305/cf2.vi18.147

Keywords:

surrogate reasoning, inference, modeling, representation, logic

Abstract

In this paper we argue, from an inferential approach, that the inferential role played by a model (FIM, for its acronym in Spanish), during modeling practice, is independent of the notion of representation engaged (or not) with the chosen modeling approach. Indeed, we believe that the notion of surrogative reasoning is neither subsidiary nor founded on the notion of representation and that it will only find its foundations in logic itself. Neither the notion of representation is an inferential notion nor FIM is a type of representation-based thinking.

References

Aliseda, A. (2006). Abductive Reasoning. Logical Investigations into Discovery and Explanation. Series Synthese Library (Vol. 330). Springer.

Aristotle (1960). Posterior Analytics. Topica. Harvard University Press.

Aristotle (1983). On interpretation. Harvard University Press.

Balzer, W., Moulines, C. U., & Sneed, J. D. (1987). An Architectonic for Science. The Structuralist Program (Vol. 186). Springer Netherlands.

Callender, C, & Cohen, J. (2006). There Is No Special Problem About Scientific Representation. THEORIA. An International Journal for Theory, History and Foundations of Science, 21(1), 67-85. https://doi.org/10.1387/theoria.554

Cartwright, N., Shomar, T., & Suárez, M. (1995). The tool box of science. Tools for the building of models with a superconductivity example. Poznań Studies in the Philosophy of the Sciences and the Humanities, 44, 137-149.

Cassini, A. (2016). Modelos científicos. Diccionario Interdisciplinar Austral (DIA). http://dia.austral.edu.ar/Modelos

Chakravartty, A. (2010). Informational versus functional theories of scientific representation. Synthese, (172), 197-213. doi: https://doi.org/10.1007/s11229-009-9502-3

Chakravartty, A. (2017). Scientific Realism. En E.N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/scientific-realism/

Contessa, G. (2007). Scientific representation, interpretation, and surrogative reasoning. Philosophy of Science, 74(1), 48-68. https://doi.org/10.1086/519478

da Costa, N. C. A., & French, S. (2003). Science and Partial Truth. A Unitary Approach to Models and Scientific Reasoning. Oxford University Press

Diéguez, A. (1998). Realismo científico. Una introducción al debate actual en la filosofía de la ciencia. Universidad de Málaga.

Frege, G. (1879). Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens. Louis Nebert.

Frigg, R. & Nguyen, J. (2017). Models and representation. En L. Magnani & T. Bertolotti (Eds.). Handbook of model-based science (pp. 49-102). Springer.

Gärdenfors, P. (1988). Knowledge in Flux. Modeling the Dynamics of Epistemic States. MIT Press.

Giere, R. (1988). Explaining Science: A Cognitive Approach. Chicago University Press.

Giere, R. (1999). Science without Laws. University of Chicago Press.

Kitcher, P. (1993). The Advancement of Science. Science without Legend, Objectivity without Illusions. Oxford University Press.

Knuuttila, T., & Merz, M. (2009). Understanding by modeling. An objectual approach. In H. W. de Regt, S. Leonelli, & K. Eigner (Eds.), Scientific Understanding. Philosophical Perspectives (pp. 146-168). University of Pittsburgh Press.

Lambert, K. (1997). Free Logics: Their Foundations, Character, and Some Applications Thereof. Academia.

Lambert, K. (2004). Free Logic. Selected Essays. Cambridge: Cambridge University Press.

Levi, I. (1991). The Fixation of Belief and Its Undoing. Changing Beliefs Through Inquiry. Cambridge: Cambridge University Press.

Lopez-Orellana, R., & Cortés-García, D. (2019). On Understanding and Modeling in Evo-Devo. An Analysis of the Polypterus Model of Phenotypic Plasticity. In A. Nepomuceno Ferández et al. (Eds.), Model-Based Reasoning in Science and Technology. Inferential Models for Logic, Language, Cognition and Computation. Series Studies in Applied Philosophy, Epistemology and Rational Ethics (Vol. 49, pp. 138-152). Springer International Publishing. https://doi.org/10.1007/978-3-030-32722-4_9

Lopez-Orellana, R., & Redmond, J. (2021a). Crítica a la noción de modelo de Patrick Suppes. Revista de Filosofía, 78, 135-155.

Lopez-Orellana, R., & Redmond, J. (2021b). La aserción dialógica como unidad mínima de conocimiento. Tópicos, Revista de Filosofía, 60, 103-152. https://doi.org/10.21555/top.v0i60.1136

Lopez-Orellana, R., Redmond, J., & Cortés-García, D. (2019). Un enfoque inferencial y dinámico de la modelización y de la comprensión en biología. Revista de Humanidades de Valparaíso, 14, 315-334. https://doi.org/10.22370/rhv2019iss14pp315-334

Lopez-Orellana, R. (2020). Sobre la modelización y la comprensión científicas. Un enfoque inferencial y dinámico aplicado al modelo evo-devo Polypterus de la plasticidad fenotípica. Tesis de Doctorado. Universidad de Salamanca.

Mäki, U. (2009). MISSing the world. models as isolations and credible surrogate systems. Erkenn (70), 29-43. https://doi.org/10.1007/s10670-008-9135-9

McMullin, E. (1985). Galilean idealization. Studies in History and Philosophy of Science, 16(3), 247-273.

Morrison, M. (1999). Models as autonomous agents. En M. Morrison & M. S. Morgan (Eds.), Models as Mediators. Perspectives on Natural and Social Science (pp. 38-65). Cambridge University Press.

Morrison, M., & Morgan, M. S. (1999b). Models as mediating instruments. In M. Morrison & M. S. Morgan (Eds.), Models as Mediators. Perspectives on Natural and Social Science (pp. 10-37). Cambridge University Press.

Psillos, S. (1999). Scientific Realism: How Science Tracks Truth. Routledge.

Rahman, S., & Redmond, J. (2007). Hugh MacColl. An overview of his Logical Work with Anthology. College Publications.

Rahman, S., & Redmond, J. (2008). Hugh MacColl et la naissance du pluralisme logique : suivi d’extraits majeurs de son œuvre. Cahiers de logique et Épistémologie, Vol. 3. College Publications.

Read, S. (1994). Thinking About Logic. An Introduction to the Philosophy of Logic. Oxford University Press.

Redmond, J (2010). The dynamic logic of fiction: dialogical approach. Tesis de Doctorado. Lille, France: Universidad de Lille 3.

Redmond, J. (2021a). A free dialogical logic for surrogate reasoning: generation of hypothesis without ontological commitments. THEORIA. An International Journal for Theory, History and Foundations of Science, 36(3), 297-320. https://doi.org/10.1387/theoria.21902

Redmond, J. (2021b). Representation and surrogate reasoning: A Proposal from Dialogical Pragmatism. In A. Cassini, & J. Redmond (Eds.), Models and idealizations in science. Artifactual and fictional approaches. Springer. https://doi.org/10.1007/978-3-030-65802-1

Redmond, J., & Lopez-Orellana, R. (2018). Lógica clásica y esquizofrenia: Por una semántica lúdica. Revista de Filosofía, 74, 214-241.

Redmond, J., Valladares, D. L., & Lopez-Orellana, R. (2017). Modelizaciones galileanas y objetos ideales. En G. Cuadrado & L. E. Gómez (eds.), Ciencias de la ingeniería en el siglo XXI. Nuevos enfoques en su lógica, enseñanza y práctica (pp. 51-61). Universidad Tecnológica Nacional.

Shapiro, S., & Kouri Kissel, T. (2018). Classical logic. En E.N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/archives/spr2018/entries/logic-classical/

Sneed, J. D. (1971). The Logical Structure of Mathematical Physics. D. Reidel.

Stegmüller, W. (1970). Theorie und Erfahrung (Vol. 2). Springer-Verlag.

Stegmüller, W. (1973). Theorienstrukturen und Theorien Dynamik. Zweiter Halbband Theorienstrukturen und Theoriendynamik (Vol. 2/2). Springer-Verlag

Stoljar, D., & Damnjanovic, N. (2010). The deflationary theory of truth. En E.N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/truth-deflationary/

Suárez, M. (2004). An inferential conception of scientific representation. Philosophy of Science, 71(5), 767-779.

Suárez, M. (2016). Representation in science. In P. Humphreys (Ed.), Oxford Handbook of the Philosophy of Science (pp. 440-459). Oxford University Press.

Sugden, R. (2000). Credible worlds: the status of theoretical models in economics. Journal of Economic Methodology, 7 (1), 1-31. doi: https://doi.org/10.1080/135017800362220

Suppes, P. (1960). A comparison of the meaning and uses of models in mathematics and the empirical sciences. Synthese, 12 (2/3), 287-301.

Suppes, P. (1962). Models of data. In E. Nagel, P. Suppes, & A. Tarski (Eds.), Logic, Methodology and Philosophy of Science: Proceedings of the 1960 International Congress (pp. 252-261). Stanford University Press.

Suppes, P. (1970). Set-Theoretical Structures in Science. Stanford University Press.

Suppes, P. (1974). The axiomatic method in the empirical sciences. In L. Henkin (Ed.), Proceedings of the Tarski Symposium (Vol. XXV, pp. 465-479). American Mathematical Society

Swoyer, C. (1991). Structural representation and surrogative reasoning. Synthese, 87(3), 449- 508. https://doi.org/10.1007/BF00499820

van Fraassen, B. C. (1980). The Scientific Image. Clarendon Press.

van Fraassen, B. C. (1987). The semantic approach to scientific theories. In N. J. Nersessian (Ed.), The Process of Science. Contemporary Philosophical Approaches to Understanding Scientific Practice (pp. 105-124). Kluwer Academic Publishers.

Worrall, J. (1989). Structural realism: The best of both worlds? Dialectica, 43, 99-124. https://doi.org/10.1111/j.1746

Published

2021-12-30

How to Cite

Redmond, J., Lopez-Orellana, R., & Paniagua, L. (2021). Logical and non-representational point of view of surrogative reasoning. Cuadernos Filosóficos / Segunda Época, (18). https://doi.org/10.35305/cf2.vi18.147

Issue

Section

Papers